Mechanisms of Hooked Steel Fiber Reinforced Concrete

Chuchai Sujivorakul, Ph.D. (U. of Michigan) Assistant Professor, King Mongkut's University of Technology Thonburi

Seminar on Fiber Reinforced Concrete, June 25, 2014 Organized by EIT

Fiber Types

Natural - asbestos, wood, sisal, kenaf

 Synthetic - steel, glass (E-glass, AR glass), Polypropylene, PVA, Spectra, Nylon

Fiber Name	Diameter (mm)	Length (mm)	Specific Gravity	Elastic Modulus (GPa)	Tensile Strength (MPa)
Carbon	0.009 - 0.01	6.35	1.90	241	2825
PVA	0.040	6.0	1.31	139	1010
Spectra	0.038	12.7	0.97	117	2585

Some Synthetic Fibers

Some Commercial Steel Fibers

Fibraflex Fibers 0.024 x 1 x 15 mm. Hooked Steel Fibers (Dramix) d = 0.5 mm., L = 30 mm.

Straight Steel Fibers (Fibercon) 0.25 x 0.75 x 25 mm

Deformed Steel Fibers To Enhance Mechanical Bond

Dramix Hooked Steel Fibers

Adding Fibers into the Mixer

New Product of Hooked Steel Fibers in 2012

Perfect anchorage + Ultra high tensile + Ductile wire

Tensile curves 3D-4D-5D wire qualities

Some Applications on FRC

Application: Floor / Pavement

Coldstore (Holland)

Precast panels + Dramix[®] Duo 100

Application: Tunneling & Mining

Interior lining of a tunnel (Germany)

Railway tunnel - Laifour (France).

Tunnel segments (England)

Rail tunnel (England)

Retaining walls (Switzerland)

Slope stabilization (Austria)

Application: Precast Concrete

Water purification (Austria)

Facade panels (Sweden)

SFRC Pipe : With different machinery

Fibre type: RC-65/40-CN System : Croci Country: Italie

SFRC Drainage element

Fibre type: RC-80/60-CP Concrete : SCC 70/65 Country: Belgium

Fibre type: OL 6/16 Concrete : C 60/70 Country: Turkey

SFRC Substations Cabins

Fibre type: RC-80/60-CN Concrete: C35/45 Country: Sweden

Fibre type: RC-80/60-CN Concrete: C 35/45 Country: France

Bond Mechanisms Between Fiber and Matrix

Single Fiber Pullout Tests

Pullout Setup

Mold and Pullout Specimens

Components of Bond

(1) Physical and/or Chemical Adhesion (2) Frictional Resistance (3) Mechanical Anchorage Due to particular geometry or deformation of the fibers such as in Torex, twisted wire strand or hooked fibers (4) Fiber-to-Fiber Interlock or Entanglement Existing at very high fiber contents such as in the case of **SIFCON**

Components of Bond (During Single Pull-out Of Hooked Fiber)

Results from Pullout Tests of Hooked Steel Fibers

Influence of Fiber Embedded Lengths

Influence of Fiber Sizes

Results from Pullout Tests of Hooked Steel Fibers (cont.)

Influence of Tensile Strength of Fibers

Summary of Tested Results from Pullout Tests of Hooked Steel Fibers

Series	Series Diameter		L _e	Matrix	Average P1		Average P2	
ID [mm.]	[MPa] [[mm.]		Load [N]	% of f _u [%]	Load [N]	% of f _u [%]	
1	0.2	2618 ^a	12.7	Mix-III	61.4	72	33	39
2	0.3	2618 ^a	12.7	Mix-III	106.7	56	62.3	33
3	0.4	2618 ^a	12.7	Mix-III	213.5	64	112.5	34
4	0.5	716 ^b	12.7	Mix-III	91.6	63	65.8	46
5		1274 ^c	12.7	Mix-III	135.6	56	106.7	43
6		1274 ^c		Mix-VI		Fiber fails	in tension	
7		1274 ^c	25.4	Mix-III	148.1	61	122.3	50
8		2412 ^a	12.7	Mix-III	272.2	56	177.0	36
9				Mix-VI	282.8	58	173.4	35
10			19	Mix-VI	310.0	64	197.0	40

^a Music steel wire; ^b Stainless steel wire # 1; ^c Commercial Dramix hooked fibers

Analytical Models to Predict Pull-Out Curves of Steel Fibers

For Smooth Steel Fibers Naaman A. E., Namur G. G., Alwan J. M., and Najm H. S. (1991)

For Hooked Steel Fibers Alwan J. M., Naaman A. E., and Guerrero P. (1999)

Tension/ Flexural Mechanisms of Hooked Fiber Reinforced Concrete

Tensile Test Setup

- The size are 5x5 cm in cross section and 50 cm in length
- All specimens are cured in water at 28 days
- The elongation of the tensile specimens was measured using the average recording of 2 symmetrically placed LVDTs over a gauge length of 20 cm.

Bending Test Setup

Tensile Behavior: Concrete with Steel Fibers

Tensile Stress [MPa]

NC = Normal Strength Concrete HC = High Strength Concrete NSF = Normal-Strength Steel Fibers HSF = High-Strength Steel Fibers

Effect of Volume Fraction of Fibers

Increase in V_fleads to • an increase in first-peak strength

 a significant increase in post-cracking strength

Linear relationship between postpeak strength and V_f is NOT observed

HPFRCC can be obtained when higher V_f and f'_c are used

Effect of Volume Fraction of Hooked Fibers

Effect of Compressive Strength of Concrete

Effect of Matrix Compressive Strength

Effect of Aspect Ratio of Fibers (L/D)

Increase in *L*_f/*D* leads to • A very slight increase in first-peak strength and some specimens do not present any improvement • increase in post-cracking

increase in post-cracking strength

The reason of improvement is related to an increase in frictional bond when the longer fiber is used

Effect of Fibers Lengths (L_f)

Post-Cracking

First-Peak

Increase in L_f leads to
Very slight increase in firstpeak strength and some specimens do not present any improvement
increase in post-cracking

strength

The reason of improvement is related to an increase in frictional bond when the longer fiber is used

Effect of Fiber Length to Aggregate Ratio

Comparison of 3D and 5D

Post Cracking Load

Flexural Model of Doubly RC Beam Using HS-FRC

Strain and Stress Distribution & Equilibrium of Forces

$$\sum F_x = 0: \quad C_c + C_s = T_s + T_c$$

$$\sum M = 0: \quad M = T_s \left(d - c + \overline{y}_c \right) + T_c \left(\overline{y}_c + \overline{y}_t \right) - C_s \left(\overline{y}_c - c + d' \right)$$

Basic Concept and Assumptions

- Using equilibrium of forces obtained from strain compatibility to develop the flexural model
- The stress-strain relationship of HS-FRC in compression is assumed as shown in the figure below.

(a) Stress-Strain Relationship in Compression

The stress-strain relationship of HS-FRC in tension is assumed as shown in the figure below.

- Prefect bond between HS-FRC and steel rebar is assumed.
- Rebar has linear relationship equal to the elastic modulus of steel, until it reach yield strength.

$$f_s = E_s \varepsilon_s \le f_y \qquad \qquad f_s' = E_s \varepsilon_s' \le f_y$$

Procedure for Obtaining Moment and Curvature Relationship

Calculation Method for Tunnel Lining (JSCE 1996)

Vertical and Horizontal Pressure

Vertical Pressure = Soil Pressure + Water Pressure + Pressure from Surcharge Load

= $(\gamma_{dry}H) + (\gamma_wH) + (P_o \times Disdribution Factor)$

Horizontal Pressure = (Soil Pressure $\times \lambda$) + Water Pressure

+ (Pressure from Surcharge Load $\times \lambda$)

 $= (\gamma_{dry}H \times \lambda) + (\gamma_{w}H) + (P_{o} \times Disdribution \ Factor \times \lambda)$

Load	Bending moment	Axial force	Shear force
Vertical load $(p_{e1} + p_{w1})$	$M = \frac{1}{4} (1 - 2\sin^2 \theta) (p_{e1} + p_{w1}) R_c^2$	$N = (p_{e1} + p_{w1})R_c \cdot \sin^2 \theta$	$\mathcal{Q} = -(p_{e1} + p_{w1})R_e \cdot \sin\theta \cdot \cos\theta$
Horizontal load $(q_{e1} + q_{w1})$	$M = \frac{1}{4} (1 - 2\cos^2 \theta) (q_{e1} + q_{w1}) R_c^2$	$N = (q_{e1} + q_{w1})R_c \cdot \cos^2 \theta$	$\mathcal{Q} = (q_{e1} + q_{w1})R_e \cdot \sin\theta \cdot \cos\theta$
Horizontal triangular load $(q_{e2} + q_{w2})$ $-q_{e1} - q_{w1}$	$M = \frac{1}{48} \left(6 - 3\cos\theta - 12\cos^2\theta + 4\cos^3\theta \right) \\ \left(q_{e2} + q_{w2} - q_{e1} - q_{w2} \right) R_c^2$	$N = \frac{1}{16} \left(\cos \theta + 8 \cos^2 \theta - 4 \cos^3 \theta \right)$ $(q_{e2} + q_{w2} - q_{e1} - q_{w1}) R_c$	$Q = \frac{1}{10} (\sin \theta + 8 \sin \theta \cdot \cos \theta)$ - 4 \sin \theta \cos^2 \theta) $(q_{e2} + q_{w2} - q_{e1} - q_{w1}) R_c$
Soil reaction $(q_r = k \cdot \delta)$	$0 \le \theta < \frac{\pi}{4}$ $M = (0.2346 - 0.3536 \cos \theta)$ $k \cdot \delta \cdot R_c^2$ $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ $M = (-0.3487 + 0.5 \sin^2 \theta)$ $+ 0.2357 \cos^3 \theta) k \cdot \delta \cdot R_c^2$	$0 \le \theta < \frac{\pi}{4}$ $N = 0.3536 \cos \theta \cdot k \cdot \delta \cdot R_{c}$ $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ $N = (-0.7071 \cos \theta + \cos^{2} \theta + 0.7071 \sin^{2} \theta \cdot \cos \theta) k \cdot \delta \cdot R_{c}$	$0 \le \theta < \frac{\pi}{4}$ $Q = 0.3536 \sin \theta \cdot k \cdot \delta \cdot R_{e}$ $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ $Q = (\sin \theta \cdot \cos \theta - 0.7071 \cos^{2} \theta + \sin \theta) k \cdot \theta \cdot R_{e}$

Dead load $(P_{g1} = \pi \cdot g_1)$	$0 \le \theta \le \frac{\pi}{2}$	$0 \le \theta \le \frac{\pi}{2}$	$0 \le \theta \le \frac{\pi}{2}$			
	$M = \left(\frac{3}{8}\pi - \theta \cdot \sin\theta\right)$	$N = \left(\theta \cdot \sin \theta - \frac{1}{6} \cos \theta\right) g \cdot R_c$	$Q = \left(\theta \cdot \cos \theta + \frac{1}{0}\sin \theta\right)g \cdot R_{c}$			
	$-\frac{5}{6}\cos\theta\bigg)g\cdot R_c^2$	$\frac{\pi}{2} \le \theta \le \pi$	$\frac{\pi}{2} \le \theta \le \pi$			
	$\frac{\pi}{2} \le \theta \le \pi$	$N = \left(-\pi \cdot \sin \theta + \theta \cdot \sin \theta + \pi \cdot \right)$	$Q = \left\{ (\pi - \theta) \cos \theta - \pi \cdot \sin \theta \right\}$			
	$M = \left\{-\frac{1}{8}\pi + (\pi - \theta)\sin\theta\right\}$	$\sin^2 \theta - \frac{1}{6} \cos \theta g \cdot R_c$	$\cos\theta - \frac{1}{6}\sin\theta \left\{ g \cdot R_{e} \right\}$			
	$-\frac{5}{6}\cos\theta - \frac{1}{2}\pi \cdot \sin^2\theta \bigg\} g \cdot R_c^2$. J			
Horizontal deformation of Without considering soil reaction derived from dead weight of lining: $\delta = \frac{\{2(p_{e1} + p_{w1}) - (q_{e1} + q_{w1}) - (q_{e2} + q_{w2})\}R_c^4}{24(\eta \cdot EI + 0.0454k \cdot R_c^4)}$						
a ring	Considering soil reaction derived from dead weight of lining:					
at spring line (δ)	$\delta = \frac{\{2(p_{e1} + p_{w1}) - (q_{e1} + q_{w1}) - (q_{e2} + q_{w2}) + \pi g\}R_c^4}{24(\eta \cdot EI + 0.0454k \cdot R_c^4)}$					
	However EI: Bending rigidity in unit width					